Search results for "Open circuit voltage"

showing 2 items of 2 documents

Enhancement of photoconversion efficiency in dye-sensitized solar cells exploiting pulsed laser deposited niobium pentoxide blocking layers

2015

Abstract Among all the photovoltaic technologies developed so far, dye-sensitized solar cells are considered as a promising alternative to the expensive and environmentally unfriendly crystalline silicon-based solar cells. One of the possible strategies employed to increase their photovoltaic efficiency is to reduce the charge recombination at the cell conductive substrate through the use of a compact blocking layer. In this paper, we report on the fabrication and characterization of dye-sensitized solar cells employing niobium pentoxide (Nb 2 O 5 ) thin film blocking layer deposited through the pulsed laser deposition technique on conductive substrates. The careful selection of the optimal…

Materials scienceOpen circuit voltage decaySubstrate (electronics)Dye-sensitized solar cellsSettore ING-INF/01 - ElettronicaPulsed laser depositionBlocking layer; Dye-sensitized solar cells; Electrochemical impedance spectroscopy; Niobium pentoxide; Open circuit voltage decay; Pulsed laser deposition; Electronic Optical and Magnetic Materials; Materials Chemistry; 2506; Metals and Alloys; 2506; Surfaces Coatings and Films; Surfaces and InterfacesCoatings and Filmschemistry.chemical_compoundElectronicMaterials ChemistryOptical and Magnetic MaterialsCrystalline siliconThin filmNiobium pentoxidepulsed laser depositionbusiness.industryOpen-circuit voltagePhotovoltaic systemMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSurfacesDye-sensitized Solar CellDye-sensitized solar cellniobium pentoxidechemistryblocking layerOptoelectronics2506businessElectrochemical impedance spectroscopyThin Solid Films
researchProduct

Light absorption and conversion in solar cell based on Si:O alloy

2013

Thin film Si:O alloys have been grown by plasma enhanced chemical vapor deposition, as intrinsic or highly doped (1 to 5 at. % of B or P dopant) layers. UV-visible/near-infrared spectroscopy revealed a great dependence of the absorption coefficient and of the optical gap (Eg) on the dopant type and concentration, as Eg decreases from 2.1 to 1.9 eV, for the intrinsic or highly p-doped sample, respectively. Thermal annealing up to 400 °C induces a huge H out-diffusion which causes a dramatic absorption increase and a reduction of Eg, down to less than 1.8 eV. A prototypal solar cell has been fabricated using a 400 nm thick, p-i-n structure made of Si:O alloy embedded within flat transparent c…

Open circuit voltageSiliconAbsorption co-efficientMaterials scienceAnnealing (metallurgy)Analytical chemistryGeneral Physics and AstronomyPhotovoltaic effectChemical vapor depositionSettore ING-INF/01 - Elettronicalaw.inventionPlasma enhanced chemical vapor depositionOut-diffusionPlasma-enhanced chemical vapor depositionlawSolar cellDoping (additives)Thin filmAbsorption (electromagnetic radiation)Infrared spectroscopyElectrical analysiDopantDopingP-i-n structureDevice fabricationThermal-annealingSolar cells Silicon alloysPhotovoltaicTransparent conductive oxides Cerium alloyJournal of Applied Physics
researchProduct